

水准仪 使用说明书

版 本 V1.10

更新日期 2023-07-10

www.aiterich.com

目录

前言	Ī		. 1
一、	产品	用途	1
Ξ,	应用	原理	. 1
三、	应用	- 中的影响因素	. 1
四、	位移	计算	. 1
五、	产品	介绍	. 1
	5.1、	产品介绍	. 2
	5.2、	产品接口说明	. 2
	5.3、	产品外观尺寸	3
六、	产品	安装	. 4
	6.1、	产品安装的两种方式	. 4
	6.2、	气管的安装和拆卸	. 6
	6.3、	液管的安装和拆卸	. 7
	6.4、	航空插头的安装和拆卸	. 9
	6.5、	堵头的安装和拆卸	10
	6.6、	气管和液管切口说明	12
	6.7、	安装前注意事项	12
	6.8、	安装步骤	13
七、	水准	仪的防护	13
	7.1、	线缆防护	13
	7.2、	抗干扰	14
八、	水准	仪的参数	14
	8.1、	水准仪的线缆定义	14
	8.2、	水准仪的基本参数	16
九、	名词	解释	16
十、	系统	示意图	17

前言

感谢您选用我公司产品,如果您有什么疑问或需要请联系我们。

在进行操作前,请仔细阅读本手册,如不遵照本手册操作造成的一切严重后果用户自担。

*本文档中尺寸标注单位为 mm(除特别说明外)。

一、产品用途

压差式水准仪是一种高精密液位测量仪器,用于测量建筑物各个测点的相对沉降。应用工地包括大型建筑物,如水高铁、铁路、地铁、电站、大坝、高层建筑物、水利枢纽工程等的测量。

二、应用原理

在应用中,多台压差式动力水准仪的测压强腔体通过液管串联至储液罐,由高精度硅晶芯体传感器读取和转化后,通过 RS485 信号把压力值传输到信号采集系统,通过分析计算,随压力测量的变化而同步变化,由此测出各测点的压力变化量而分析被测物的相对沉降高度。

三、应用中的影响因素

1、压力变化的影响

空气流动,导致仪器内空气压力有变化,进而影响测量结果。(典型应用场景:隧道)

2、震动的影响

测点附近重量增加时,测点下沉,导致仪器内液面上升;测点附近重量减少时,测点上抬,导致仪器内液面下降。进而使仪器产生上下震动而导致仪器内部测压腔体压力变化波动。(典型应用:铁路、桥梁)

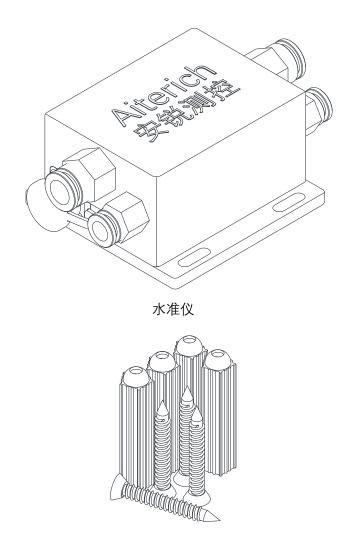
3、基准点的影响

对基准点造成以上 1、2 两种影响, 会传递给其它测点相反的作用。

4、温度的影响

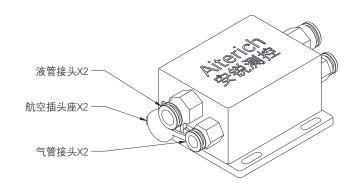
测点和液管温度升高,压力增大;测点和液管温度降低,压力减少。

四、位移计算

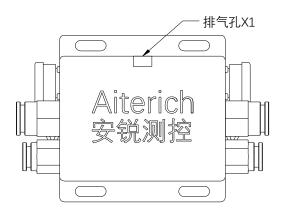

一套水准仪沉降系统所描述的位移量都是相对于基准点进行计算的。

例如: 基准点 P0, 测点 P1, 首次使用时确定一个初始相对位移值: D $_{70}$ =(P0 $_{70}$ -P1 $_{70}$)*102.04081, 之后每次测量的相对位移值 D $_{70}$ =(P0 $_{70}$ -P1 $_{70}$)*102.04081 都与初始值进行差值计算, 则测点相对于基准点的累计位移值 D $_{70}$ = D $_{70}$ -D $_{70}$ 。

五、产品介绍

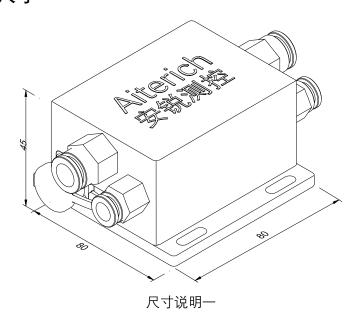


5.1、产品介绍

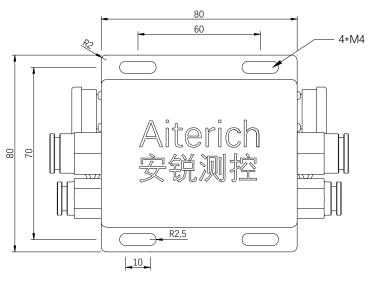

3#自攻螺丝套装 X1

5.2、产品接口说明

接口说明一


接口说明二

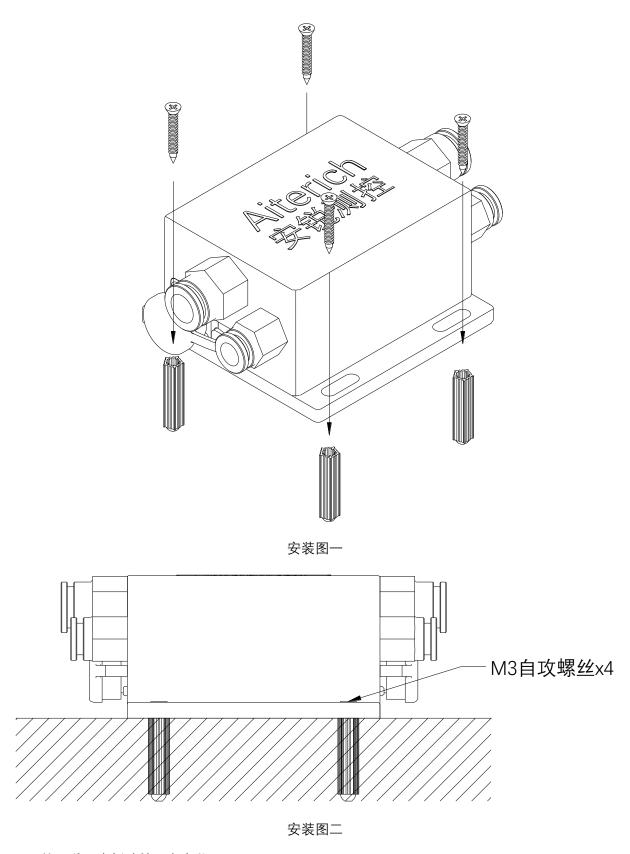
航空插头: 出厂每台仪器配两个(各含 0.5 米通讯线)。


液管: 出厂不标配, 用户根据使用量购买。规格为 PU10*6.5。

气管: 出厂不标配, 用户根据使用量购买。规格为 PU8*5。

5.3、产品外观尺寸

尺寸说明二

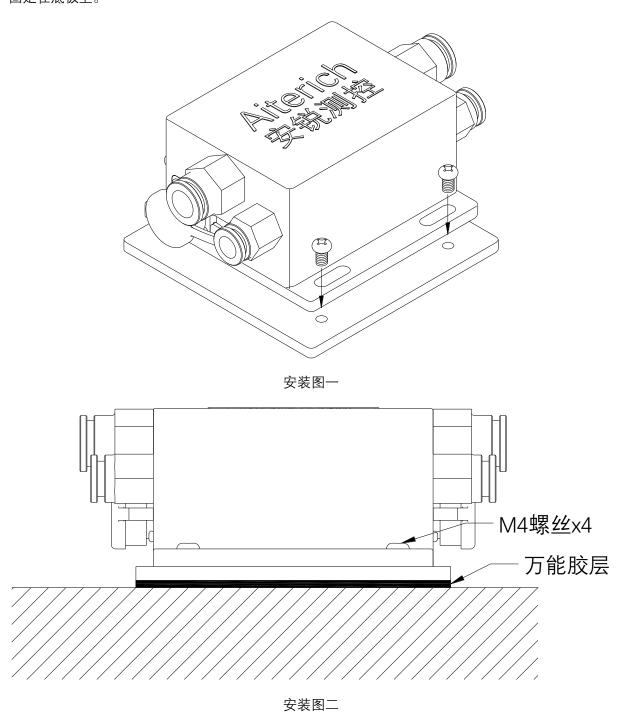

六、产品安装

6.1、产品安装的两种方式

第一种: 膨胀螺丝固定安装

应用场景: 测点位置允许钻孔。

水准仪直接和测点面接触安装。建议使用 6#钻头钻孔,8#膨胀套,M3x25 的自攻螺丝。

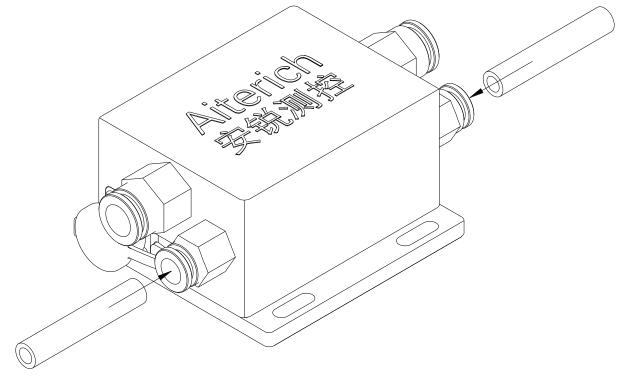


第二种:底板胶粘固定安装

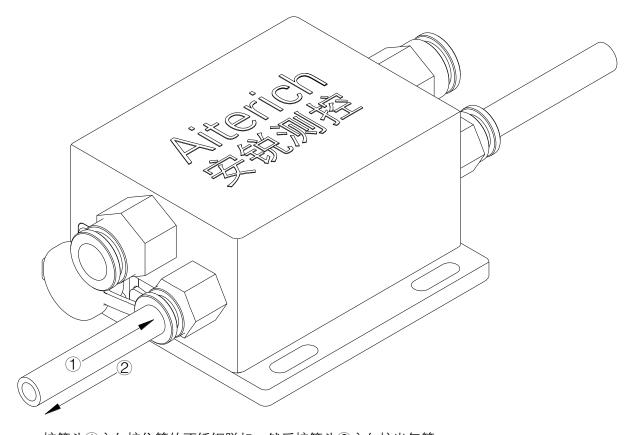
应用场景: 测点位置不允许钻孔且测点面光滑洁净。

先将安装底板使用万能胶粘在测点位置,等待干固(一般 24 小时),然后使用 M4 螺丝将水准仪固定在底板上。

6.2、气管的安装和拆卸

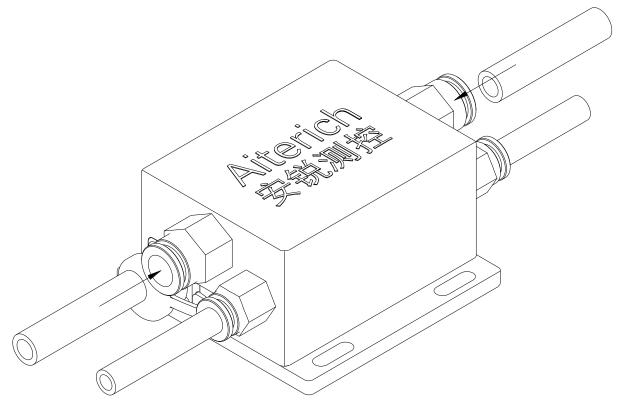

安装:

按箭头方向按住气管的不锈钢脱扣, 然后按箭头方向推入气管, 推到底后松开不锈钢卡扣即可。注意:


1、气管的切口要平整(切口应和气管的圆截面平行),避免漏气。

2、气管插到底,避免漏气。

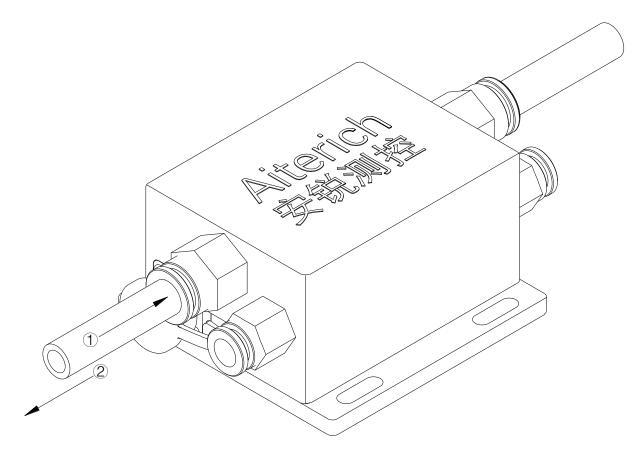
拆卸:



按箭头①方向按住管的不锈钢脱扣,然后按箭头②方向拉出气管。

6.3、液管的安装和拆卸

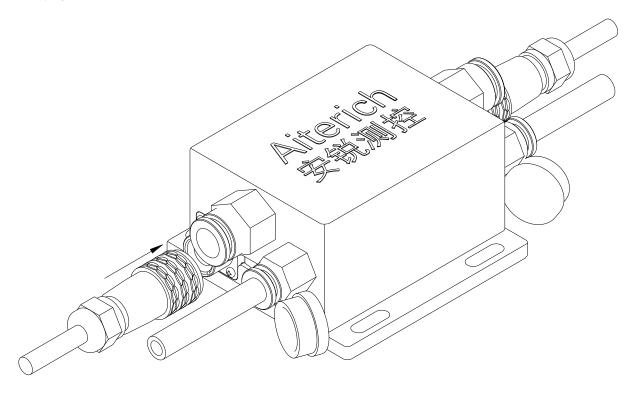
安装:



按箭头方向按住液管的不锈钢脱扣, 然后按箭头方向推入液管, 推到底后松开不锈钢卡扣即可。注意:

- 1、液管的切口要平整(切口应和液管的圆截面平行),避免漏液。
- 2、液管插到底,避免漏液。

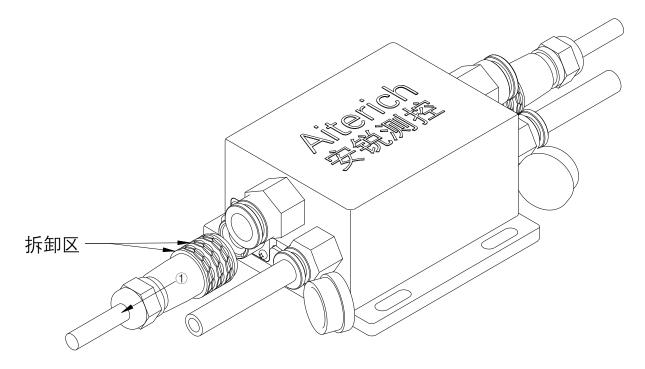
拆卸:



按箭头①方向按住液管的不锈钢脱扣,然后按箭头②方向拉出液管。

6.4、航空插头的安装和拆卸

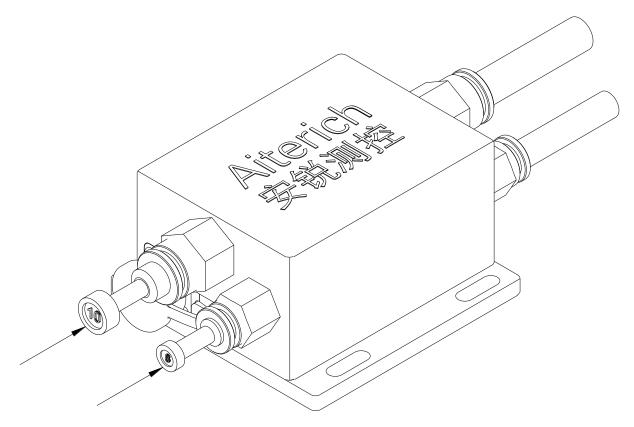
安装:



找准航空插头上的方向标志红点,对准航空插头母座的方向标志红点,将航空插头按箭头方向 推入航空插头母座。

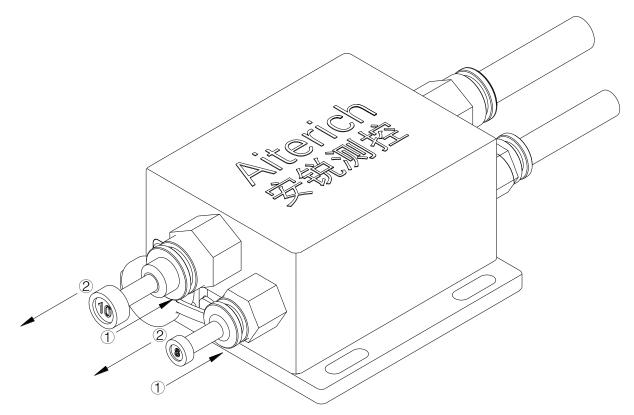
注意:

航空插头要推到位,否则会出现接触不良,通信异常或进水现象。


拆卸:

6.5、堵头的安装和拆卸

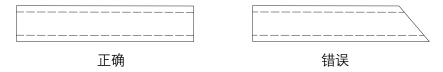
安装:



水准仪是按串联设计的,一个接一个往后面串接。在第一个水准仪(一般为基准点)的一端,将液 孔和气孔分别接到储液罐的液孔和气孔,另一端接到后面水准仪的液孔和气孔,依次类推。在最后 一个水准仪的末端,液管口和气管口分别使用 M10 和 M8 的堵头堵住。使用方法和安装气管、液管 的方式一致,按住不锈钢脱扣,堵头按箭头方向推入。航空插头母座使用自带的防水胶盖堵住。 注意:

- 1、堵头务必推到底,避免漏气、漏液。
- 2、航空插头母座胶盖盖到位,避免进水。

拆卸:



按箭头①方向按住气管/液管的不锈钢脱扣,然后按箭头②方向拉出堵头。

6.6、气管和液管切口说明

切口的两端都需要和圆管截面平行,如下图所示。

6.7、安装前注意事项

- 1、水准仪必须在没有加压且断电情况下进行安装。水准仪的通信线缆接线务必按照线序说明连接,且必须在断电情况下进行。
- 2、基准点位置的选择,原则上选择不易产生沉降和不易受干扰等相对稳定的位置。
- 3、测点位置选择,原则上选择容易安装且能具有沉降代表性的位置。
- 4、所有测点的位置,尽可能对其进行找平处理,使得所有测点基本维持在一个水平线上,再把设备安装上去,这样才能有效利用设备的量程,否则可能其中的测点高程低于量程或高于量程,从而无法实现测量。
- 5、根据水准仪的量程,储液罐和水准仪高差不能大于量程。例如水准仪的量程为0~1米,两 者高差不大于1米。一般建议水准仪和储液罐的高差在二分之一水准仪量程最佳。
- 6、储液罐和液管连接好后,灌液前,应固定住储液罐。

- 7、储液罐的液位:接近罐液口。
- 8、液体的使用:建议使用防冻液。防冻液在使用前静置一段时间,使用前不能剧烈摇晃。如要使用水,建议为纯净的自来水,需提前接好,静置 2~4 小时左右,因自来水是从管路中高压出来,水中会带有部分空气,如不静置就灌入管路中,后期可能会产生小水泡,从而影响测量结果。
- 9、系统调试安装完成后,应从灌液口往储液罐中注入一层硅油,防止液体蒸发。
- 10、在灌液体时,请勿连接储液罐的气管,以免液体流入气管损坏设备。液体灌入完成后,再连接储液罐的气管。

6.8、安装步骤

- 1、选定测点位置,布放通讯线缆、液管、气管到对应位置。
- 2、安装储液罐。
- 3、布放水准仪,通讯线缆、液管、气管和水准仪连通,距离储液罐最近的水准仪的液孔和气 孔的一端分别连接至储液罐的液孔和气孔。
- 4、连接通讯线缆,检查通讯线缆连接正确性,系统上电,读取数值(未灌液压力值接近零值, 异常设备显示空)。
- 5、数值读取正常后,系统断电。开始往储液罐中灌液。灌液流速要大于液管的流速,否则液管中进入空气,就会形成气泡,此时就需要一直灌液直到该气泡从最后一个水准仪排出。按液体流经的顺序,对水准仪进行排气操作,使用4#内六角扳手,拧松排气孔处的螺丝,观察是否有气泡和液体一起排出,当排出的液体中没有气泡,表示排气完成,拧紧螺丝。每个测点和基准点都需要进行排气操作。排气泡时排气孔应朝上。
- 6、检查和确认整个液管管路中是否还存在气泡,如无气泡,则使用堵头堵住最后一个水准仪的液孔。如有气泡,继续往储液罐中加液体,直至气泡排出。完成以上步骤后,将最后一个水准仪的气孔和液孔使用堵头堵住,固定锁紧水准仪。
- 7、系统上电, 读取数值, 对系统进行初始化操作(具体查看平台操作使用说明)。

七、水准仪的防护

7.1、线缆防护

- 1、避免水准仪的电缆线被刀或其它锋利的金属物体划伤,造成水准仪进水而损坏
- 2、避免水准仪的液管、气管被刀或其它锋利的金属物体划伤,或踩踏,一般采取的所示是使用 PVC 管进行保护。

3、避免水准仪的液管、气管高温或低温环境下使用,一般采取的措施是使用隔热保温棉进行保护。

7.2、抗干扰

- 1、水准仪属于弱电设备,布线时需与强电线缆分开布设。
- 2、避免水准仪的电缆线、液管、气管处于架空状态。

八、水准仪的参数

8.1、水准仪的线缆定义

四芯屏蔽电缆:

线缆颜色	线缆定义
红	电源正极
黑(蓝)	电源负极
绿	RS485A
白	RS485B

注意:

线缆的长度尽可能根据实际现场的长度进行定制,避免使用现场进行接线出现接错或接头 处不防水等问题。如确实需要自行接线,接头处建议使用专用的防水接头。

两芯屏蔽电缆:


线缆颜色	线缆定义
红	RS485B
黑(蓝)	RS485A

注意:

线缆的长度尽可能根据实际现场的长度进行定制,避免使用现场进行接线出现接错或接头 处不防水等问题。如确实需要自行接线,接头处建议使用专用的防水接头。

航空插头:

说明:

- 1、两芯通讯线的产品需配套本公司的 4G 采集仪、网关或 RS485 信号转换器使用。
- 2、四芯通讯线的产品可使用本公司网关、4G采集仪或其它使用 Modbus 协议的网关产品。
- 3、航空插头线出厂默认标配 0.5 米通讯线。如用户根据安装位置可以确定 2 台仪器之间的实际 距离,可以出厂定制对应的长度。
 - 4、四芯航空插头的插针和插孔旁边有对应的数字编号 1/2/3/4, 对应的线序如下:

1 -> 红色 -> 12V+

2 -> 黑色(蓝色) -> GND

3 -> 黄色 -> RS485A

4 -> 绿色 -> RS485B

5、两芯航空插头的插针和插孔旁边有对应的数字编号 1/2/3/4. 对应的线序如下:

1 -> 红色 -> 12V+/RS485B

2 -> 黑色(蓝色) -> GND/RS485A

3 -> 空

4 -> 空

8.2、水准仪的基本参数

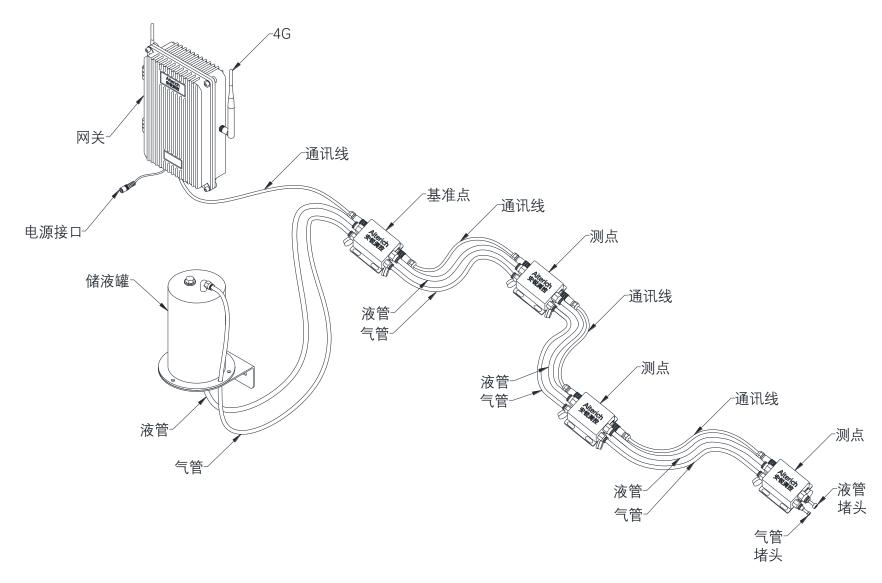
量程	1000mm / 2000mm / 4000mm (大量程定制)
主 /正	1000011117 20000111117 700011111 (八里住足即)
分辨率	0.01mm
测量精度	典型值±0.05%FS
采样频率	每分钟 1 次
温度补偿	温度传感器
通讯接口	RS485
通讯协议	Modbus
线 缆 接 口	4 芯线缆/2 芯线缆
水管接口	外径 10mm 快装接头
气管接口	外径 8mm 快装接头
工作电压	DC9V~DC30V
工作电流	典型值 16mA@12V
工作温度	-45°C ~ 85°C
产品尺寸	100mm*60mm*45mm
防护等级	IP68
外壳材质	铝合金氧化
安装方式	M4 螺丝安装/胶粘安装

九、名词解释

基准点:被测物测点所需要参考的水准仪称为基准点,基准点是观测沉降变形时最可靠、最基本的测点,要求安装在不易产生沉降和不易受干扰等相对稳定的位置。一般一套系统中只有一个基准点。

测点:被测物需要监测位置安装的水准仪称为测点。一般一套系统中有多个测点。

压力:水准仪的压力,单位 kPa。


温度: 水准仪的内部温度, 也即工作温度, 单位℃。

相对位移: 测点和基准点的高差, 单位 mm。

累计位移: 测点相对于基准点的一个累计变化,单位 mm。值为正值,表示上抬,值为负值,表示下沉。

十、系统示意图

