

无线三轴加速度计-高频采集 使用说明书

版 本 V3.1

更新日期 2025-05-14

www.aiterich.com

目录

前言	Ţ		1
-,	产品	占用途	1
二、	应用]原理	1
三、		b应介绍	
	3.1、	配件介绍	1
	3.2、	尺寸说明	
	3.3、	接口功能	2
	3.4、	测量轴方向	5
四、	产品	l安装	(
	4.1、	安装天线	e
	4.2、	安装在被测物表面	6
	4.3、	安装完成	7
五、	产品	与参数	9
	5.1、	基本参数	9
	5.2、	工作状态	9
	5.3、	工作时长	10
	5.4、	数据数量	11
六、	应用]方式	12
七、	名词]解释	12
八、	常见	l问题	12
九、	注意	ī事项	12
+.	组网	示意图	14

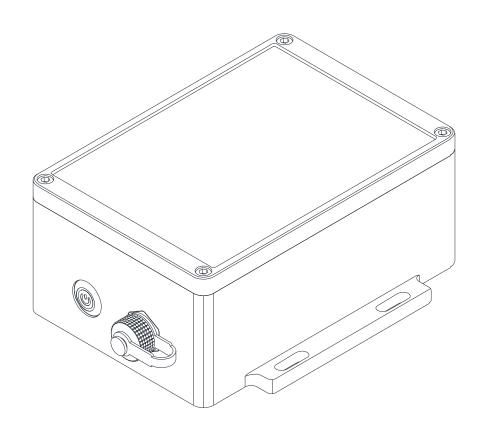
前言

感谢您选用我公司产品,如果您有什么疑问或需要请联系我们。

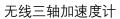
在进行操作前,请仔细阅读本手册,如不遵照本手册操作造成的一切严重后果用户自担。

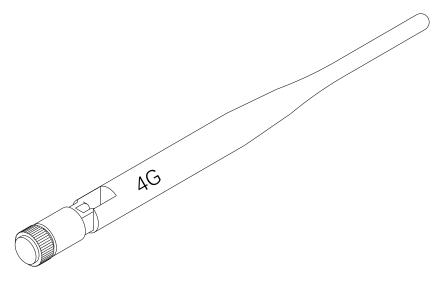
*本文档中尺寸标注单位为 mm(除特别说明外)。

一、产品用途

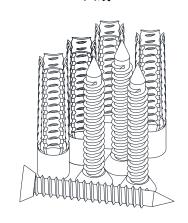

三轴加速度传感器是一款基于 MEMS 技术传感器,内置 MCU 和数据处理电路,可测量三轴加速度和振动频率等参数,结构简单,安装方便,可广泛应用于铁路、桥梁、 建筑、车船、机械、冶金、交通运输等行业结构体的振动频率、加速度和索力基频的测量。

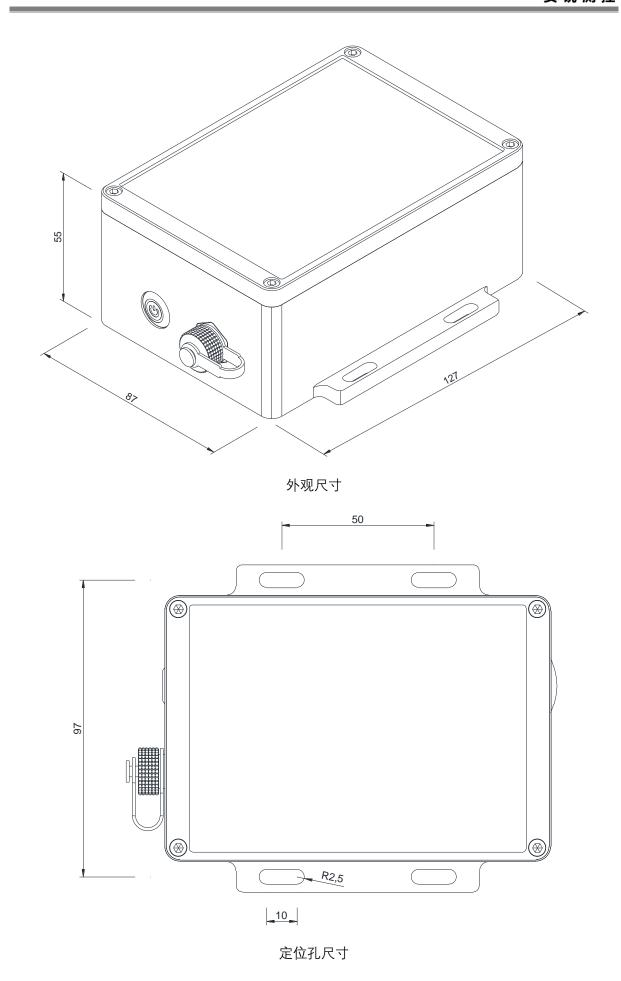
二、应用原理


基于 MEMS 技术,是一个集成 X/Y/Z 三轴加速度加速度传感器。内部集成了感应测量元件和混合信号应用电路,处理过后的传感器信号由数字接口输出,最终将倾角数据和加速度数据通过网络信号传输到平台。

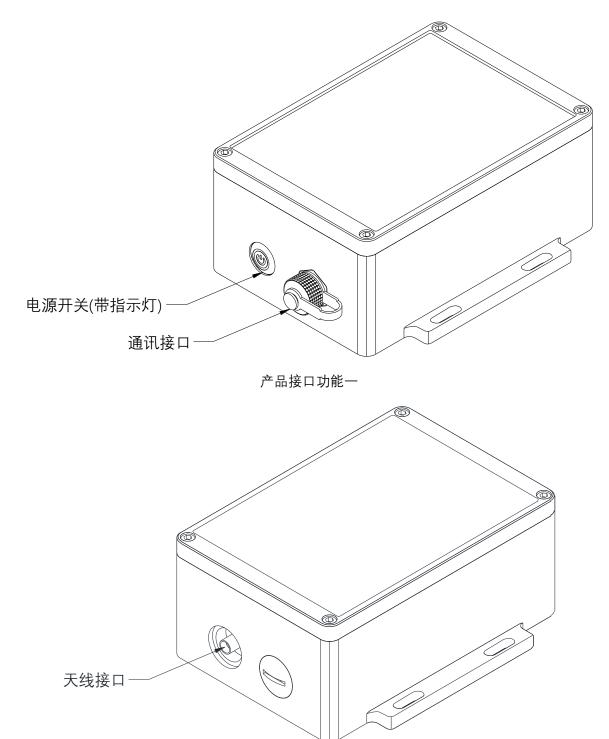

三、产品应介绍

3.1、配件介绍




天线

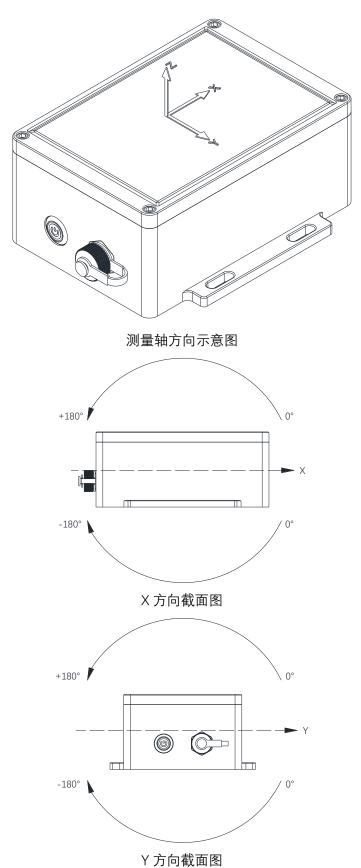
4#自攻螺丝套装


3.2、尺寸说明

3.3、接口功能

产品接口功能二

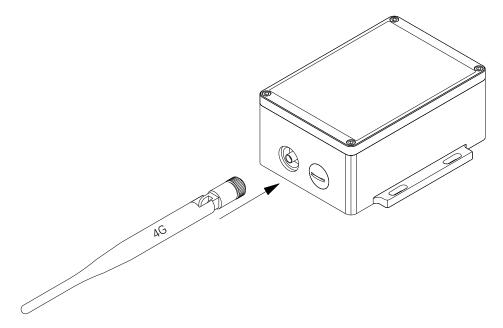
说明:无线加速度计 4G 版分为太阳能版和充电版,根据现场使用情况选购。


太阳能版:一般应用在室外有太阳照射的场景,利用太阳能自动充电。

充电版:一般应用在室内或无太阳照射的场景,根据使用时长自行充电补充电量; 充电版默认配一条 USB 转航空插头线,默认不配充电器,使用常规 USB 充电器充电即可。

如是太阳能版,通讯接口默认无功能。

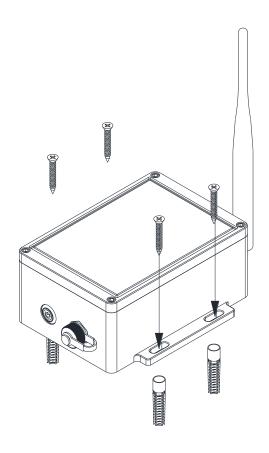
3.4、测量轴方向


四、产品安装

无论以何种方式安装,加速度计的安装需要保证底部与被测物贴合紧固,确保加速度计与结构 体一起振动。

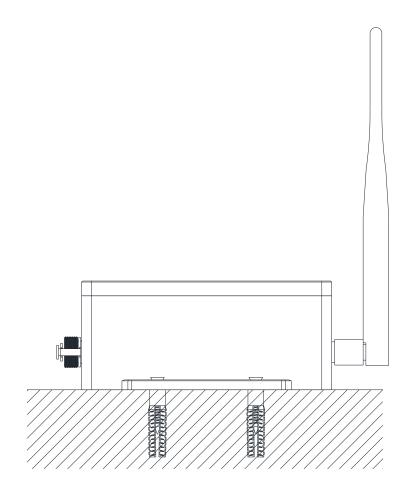
注意:太阳能版本的安装,应保证仪器有足够的日照时长;如条件允许,宜正南向 40°~45°水平倾角安装,以此达到大阳能的最大转化效率。

4.1、安装天线


如下图所示方向、拧入天线、拧紧调整好天线方向。

4.2、安装在被测物表面

此处以安装在混凝土结构上为例,在混凝土结构的被测物表面,定位好安装孔,钻孔,将膨胀套嵌入孔中。再固定加速度计。推荐使用8#钻头钻孔,8#膨胀套,M4x35的自攻螺丝。钻孔提示: 打轻质砖、水泥砖、红砖等砖墙体,选用轻型冲击钻或手电钻等,这样开孔尺寸更准确,安装质量 更高。使用重型电锤打砖墙容易震碎砖块导致固定不稳。混凝土等坚固地面或墙体则可使用重型电 锤。


加速度计安装在钢结构上时,则先将安装底板焊接在被测体结构表面,再将传感器通过螺丝固定在安装底板上(严禁直接对传感器进行焊接,安装底板根据加速度计的定位孔尺寸图加工)。传感器安装在缆索上时采用抱箍固定,如仪器需要单独供电,则线缆穿管并朝下沿着缆索走线。短时间测量可将加速度计底部胶粘到被测体结构表面。

4.3、安装完成

安装完成后,按下开机键,加速度计开始工作。

五、产品参数

5.1、基本参数

频率范围		0.5~50Hz(默认),其它范围可调	
加速度	是量程	±2g	
加速度	5分辨率	0.061mg	
精度		±0.5mg	
采样/上传速率		100Hz(默认),50/100/200Hz 可调,三轴	
温度补偿		内部温度补偿	
网络信号		4G	
网络卡		内嵌(使用期1年,到期续费可用)	
电池		6000mAH	
	休眠状态	10uA	
功耗	空闲状态	90mA	
	发射状态	200mA	
防护等级		IP68	
外壳		127mm*87mm*55mm,铝合金	
安装方式		钻孔安装/胶粘安转/底板安装/抱箍安装	
工作温度		-45℃ ~ 85℃	

5.2、工作状态

加速度计的电源开关带指示灯。

加速度计的电源开关按下开机,如设备正常驻网成功,指示灯常亮。

加速度计低功耗/休眠唤醒,如设备正常驻网成功,指示灯常亮。

5.3、工作时长

无线三轴加速度计的电池工作时长与采集周期、采样频率有关,下表列出几种常规采集周期和 采样频率进行参考。如是太阳能版本,工作时长会相应延长(主要取决于太阳能的转化效率)。采集周 期表示多长时间采集一次,采样频率表示 1 秒种采集的数据量。

示例: 5 分钟采集周期, 采样频率 50Hz, 表示 5 分钟采集一次, 每秒钟的采集数据量为 50 个。

采样频率: 50Hz			
电池容量(mAH)	采集周期	工作时长(天)	
6000	24 小时	432	
6000	12 小时	216	
6000	6 小时	108	
6000	3 小时	54	
6000	2 小时	36	
6000	1 小时	18	
6000	30 分钟	9	
6000	20 分钟	6	
6000	10 分钟	3	
6000	5 分钟	1	

采样频率:100Hz			
电池容量(mAH)	采集频率	工作时长(天)	
6000	24 小时	590	
6000	12 小时	298	
6000	6 小时	150	
6000	3 小时	75	
6000	2 小时	50	
6000	1 小时	25	
6000	30 分钟	12	
6000	20 分钟	8	
6000	10 分钟	4	

6000 5 分钟 2	0000) // tm	2
-------------	------	---------	---

采样频率:200Hz			
电池容量(mAH)	采集频率	工作时长(天)	
6000	24 小时	748	
6000	12 小时	379	
6000	6 小时	191	
6000	3 小时	96	
6000	2 小时	64	
6000	1 小时	32	
6000	30 分钟	16	
6000	20 分钟	10	
6000	10 分钟	5	
6000	5 分钟	3	

5.4、数据数量

采集一次的数据总数为 27000 个, 具体每轴对应数量如下表。

采集加速度:

☆ 採 堀 漆 () →)	单轴数据量(个)	三轴数据量(个)	双佳叶上(4)
采样频率(Hz)	加速度	加速度	采集时长(s)
50	9000	27000	180
100	9000	27000	90
200	9000	27000	45

采集加速度和角加速度:

采样频率(Hz)	单轴数据量(个)	六轴数据量(个)	采集时长(s)
木件娛卒(□2)	加速度和角速度	加速度和角加速度	木条町区(5)
50	4500	27000	180
100	4500	27000	90
200	4500	27000	45

六、应用方式

在安锐物联云平台中可下载高频加速度保存文件,进一步对数据进行分析和处理。具体使用方法参考《安锐物联云平台使用手册》。

七、名词解释

安锐物联云平台中,物模型属性名称的名词含义参考如下:

电压:设备电池电压。

信号质量:设备的网络信号质量。

x 角度、表示 x 方向的当前角度。

y 角度,表示 y 方向的当前角度。

z 角度,表示 z 方向的当前角度。

x 角度变化量,表示 x 方向的当前角度减去初始值角度的值。

y 角度变化量,表示 y 方向的当前角度减去初始值角度的值。

z角度变化量,表示z方向的当前角度减去初始值角度的值。

高频加速度保存文件: 三轴加速度计采集的高频数据。

八、常见问题

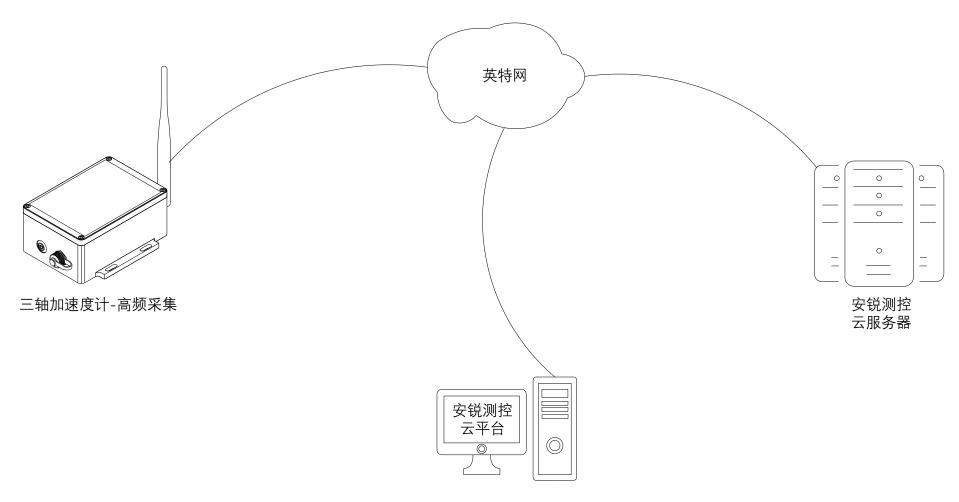
1、为什么开机后没有数据?

可能原因为网络信号差,数据未发送成功。每次发送数据的同时会发送信号质量值,低于 15 为信号质量差,低于该值设备可能无法正常传输信息。正常信号质量值在 15~30 之间。

2、什么时候需要充电或电压不足?

每次发送数据的同时会发送电池电压值,低于 2.7V 为欠压状态,欠压后设备无法正常工作。正常工作电压值在 2.7V~3.3V 之间。

九、注意事项


- 1、加速度计在运输和使用过程中应轻拿轻放,避免因过大的冲击和震动而损坏。
- 2、加速度计如需要单独供电,供电线缆应根据项目不同,选择 PVC 管、PVC 桥架、不锈钢桥架等不同的保护方式,布线过程中避免线缆扭绞。
- 3、供电线缆不要和高压、大电流电源线并行走线布放,避免干扰。
- 4、布线完成后应在线缆头端做好标识,便于接入上一级设备或后期线路维护。
- 5、布线时线缆不要过于拉直和拉紧,避免意外受拉时线缆拉断。

- 6、若用于桥梁、索塔等高空布设,建议预留跌落保护装置。
- 7、加速度计出现问题时,应及时与厂家联系,查明故障原因,请勿自行拆卸内部结构。

十、组网示意图

