

索力计_4G 版 使用说明书

版 本 V3.3

更新日期 2025-09-16

www.aiterich.com

目录

前言	Ţ		1
-、	产品	品用途	1
Ξ,	应用]原理	1
三、			
	3.1、	配件介绍	2
	3.2、	尺寸说明	
	3.3、	接口功能	
	3.4、	测量轴方向	
四、	产品	品安装	7
	4.1、		
	4.2、	安装在被测物表面	7
	4.3、	安装完成	8
五、	产品	l参数	ç
	5.1、	基本参数	ç
	5.2、	工作状态	9
	5.3、	工作时长	10
	5.4、	数据数量	11
六、	索力]计算与平台操作	11
七、	术语	5与参数说明	11
八、	常见]问题	12
九、	注意	5事项	12
十、	组网	7 示意图	14

前言

感谢您选用我公司产品,如果您有什么疑问或需要请联系我们。

在进行操作前,请仔细阅读本手册,如不遵照本手册操作造成的一切严重后果用户自担。

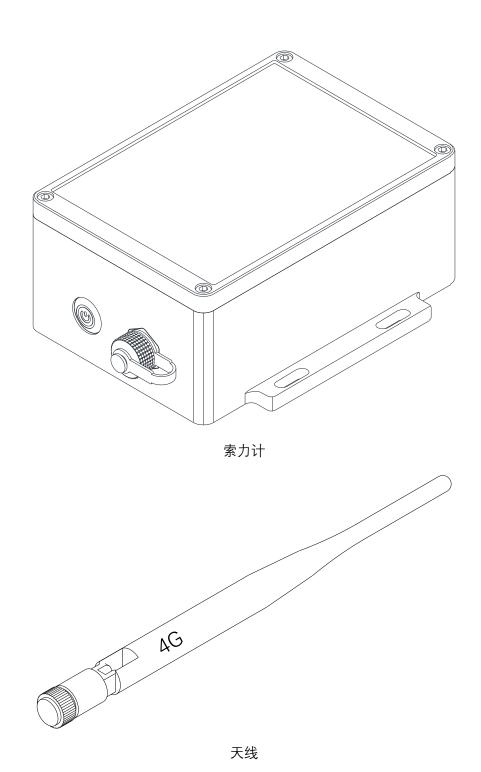
*本文档中尺寸标注单位为 mm(除特别说明外)。

一、产品用途

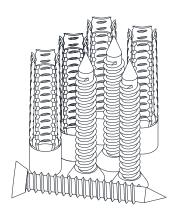
索力计是一款利用 MEMS 技术感知拉索振动特性,通过 4G 网络将数据上传到安锐测控云平台, 经过处理得到的索力值的智能传感器。可同时测量三轴线性加速度、角速度和振动频率等参数。具 有结构简单,安装方便等特点。可广泛运用于桥梁斜拉索、悬索桥吊索、输电塔拉索、大型结构锚 索等结构物的索力计振动特性测量。

二、应用原理

本款索力计使用频率法测索力。通过测量拉索振动的固有频率,利用物理模型来间接计算索力。物理模型:拉索可简化为两端固定的"弦"。其第 n 阶固有频率 fn 与其张力 T、单位长度质量 m、长度 L 以及边界条件有关。对于理想两端固定的长细索,公式简化为:

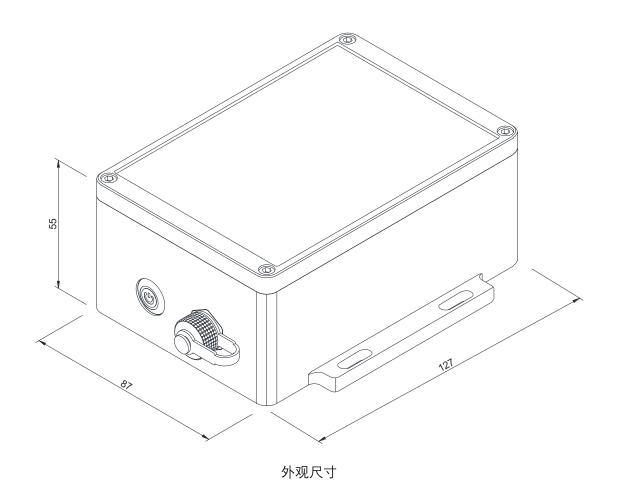

fn = (n/(2L)) * sqrt(T/m), 其中 n 是振动阶次 (1, 2, 3, ...)。

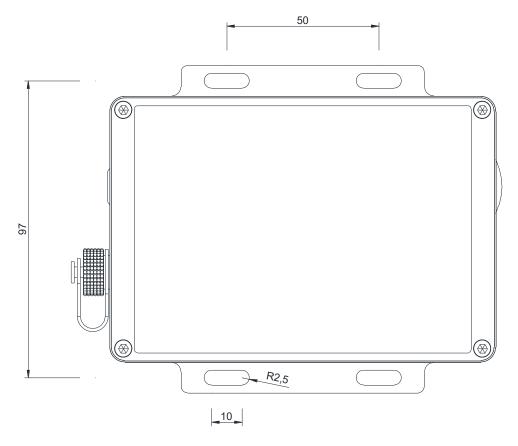
使用加速度计和陀螺仪采集拉索在环境激励下的振动信号,经过处理后识别出基频 (f1) 和可能的前几阶谐频 (f2, f3, ...)。多阶频率 (f1, f2, f3...) 进行联立解算,得到精确的索力值 T。公式中的索长 L 和单位长度质量 m 需要在部署时作为已知参数输入系统。



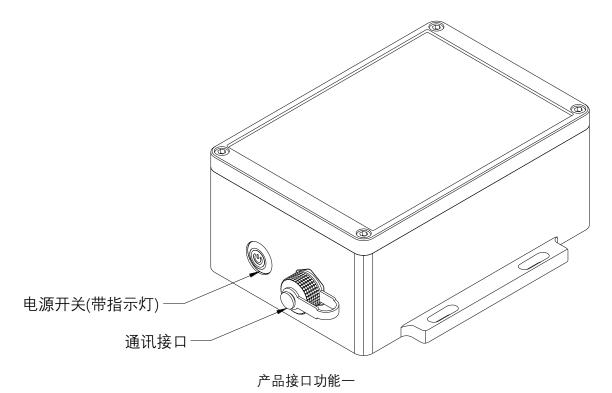
三、产品结构和配件

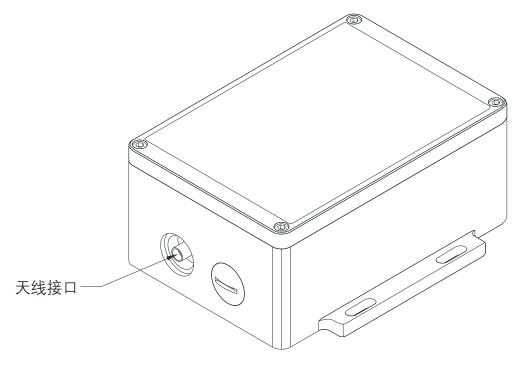
3.1、配件介绍




4#自攻螺丝套装

3.2、尺寸说明

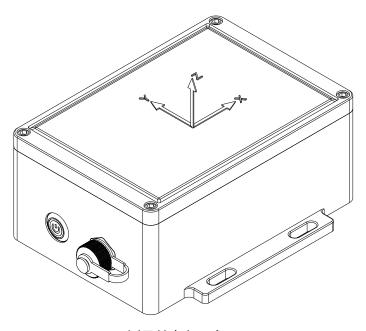

深圳安锐科技有限公司 www.aiterich.com 3



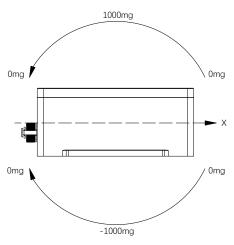
定位孔尺寸

3.3、接口功能

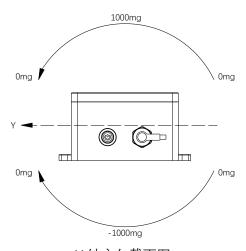
产品接口功能二

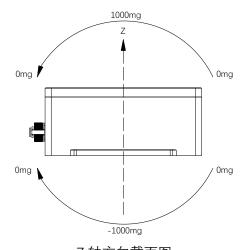

说明:索力计_4G 版分为太阳能版和充电版,根据现场使用情况选购。

太阳能版:一般应用在室外有太阳照射的场景,利用太阳能自动充电。


充电版:一般应用在室内或无太阳照射的场景,根据使用时长自行充电补充电量; 充电版默认配一条 USB 转航空插头线,默认不配充电器,使用常规 USB 充电器充电即可。

如是太阳能版,通讯接口默认无功能。


3.4、测量轴方向

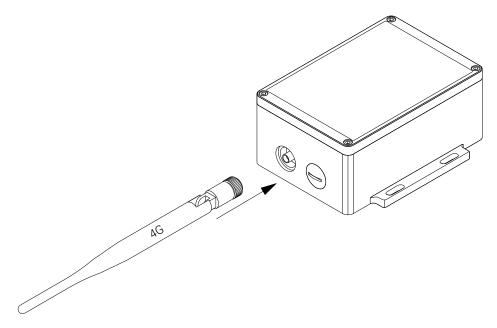

测量轴方向示意图

X轴方向截面图

Y轴方向截面图

Z轴方向截面图

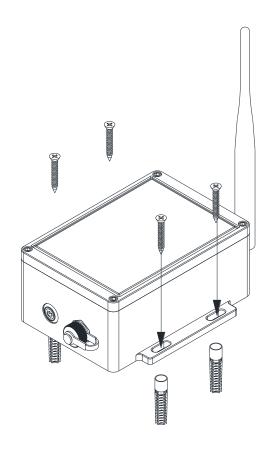
四、产品安装


无论以何种方式安装,索力计的安装需要保证底部与被测物贴合紧固,确保索力计与结构体一 起振动。

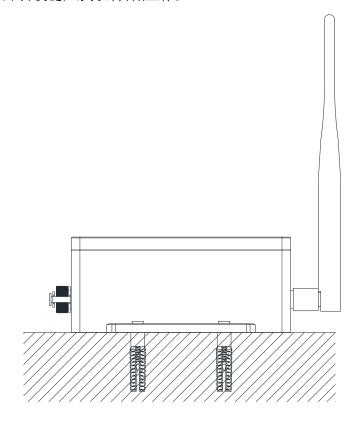
注意:

- 1、太阳能版本的安装,应保证仪器有足够的日照时长;如条件允许,宜正南向 40°~45°水平倾角安装,以此达到大阳能的最大转化效率。
 - 2、安装时,尽量保持索力计的其中一轴的方向平行于拉索,其他轴垂直于拉索。
- 3、索力计的安装位置,需要远离拉索的固定端,尽量靠近拉索的中部。条件限制时,需要与拉索的减振器保持5米以上的距离。

4.1、安装天线


如下图所示方向,拧入天线,拧紧调整好天线方向。

4.2、安装在被测物表面


索力计安装在缆索上时采用抱箍固定,如索力计需要单独供电,则线缆穿管并朝下沿着缆索走线。短时间测量可将索力计底部胶粘到被测体结构表面。

安装在钢结构上时,则先将安装底板焊接在被测体结构表面,再将索力计通过螺丝固定在安装底板上(严禁直接对索力计进行焊接,安装底板根据索力计的定位孔尺寸图加工)。

4.3、安装完成

安装完成后, 按下开机键, 索力计开始工作。

五、产品参数

5.1、基本参数

频率范围		0.5~50Hz(默认),其它范围可调	
加速原		±2g	
加速原	度分辨率	0.061mg	
加速原	要灵敏度	16384LSB/g	
加速原	度精度	±0.5mg	
角速原	度量程	±250°/s(默认),其它可调	
角速原	度分辨率	0.0076°/s@±250	
角速原	要灵敏度	131.072LSB/(°/s)@±250	
角速原	度精度	±0.08°/s RMS	
采样/	上传速率	100Hz(默认),50/100/200Hz 可调,三轴	
温度	补偿	内部温度补偿	
网络伯	言号	4G	
流量-	₹	内嵌(使用期1年,到期续费可用)	
电池		6000mAH	
	休眠状态	10uA	
功耗	空闲状态	90mA	
	发射状态	200mA	
防护等级		IP68	
外壳		127mm*87mm*55mm, 铝合金	
安装方式		钻孔安装/胶粘安转/底板安装/抱箍安装	
工作温度		-45°C ~ 85°C	

5.2、工作状态

索力计的电源开关带指示灯。

索力计的电源开关按下开机,如设备正常驻网成功,指示灯常亮。

索力计低功耗/休眠唤醒,如设备正常驻网成功,指示灯常亮。

5.3、工作时长

索力计的电池工作时长与采集周期、采样频率有关,下表列出几种常规采集周期和采样频率进行参考。如是太阳能版本,工作时长会相应延长(主要取决于太阳能的转化效率)。采集周期表示多长时间采集一次,采样频率表示1秒种采集的数据量。

示例: 5 分钟采集周期, 采样频率 50Hz, 表示 5 分钟采集一次, 每秒钟的采集数据量为 50 个。

采样频率: 50Hz			
电池容量(mAH)	采集周期	工作时长(天)	
6000	24 小时	432	
6000	6000 12 小时		
6000	6 小时	108	
6000	3 小时	54	
6000	2 小时	36	
6000	1 小时	18	
6000	30 分钟	9	
6000	20 分钟	6	
6000	10 分钟	3	
6000	5 分钟	1	

采样频率: 100Hz			
电池容量(mAH)	采集频率	工作时长(天)	
6000	24 小时	590	
6000	12 小时	298	
6000	6 小时	150	
6000	3 小时	75	
6000	2 小时	50	
6000	1 小时	25	
6000	30 分钟	12	
6000	20 分钟	8	
6000	10 分钟	4	

6000	5 分钟	2
------	------	---

采样频率: 200Hz			
电池容量(mAH)	采集频率	工作时长(天)	
6000	24 小时	748	
6000	12 小时	379	
6000	6 小时	191	
6000	3 小时	96	
6000	2 小时	64	
6000	1 小时	32	
6000	30 分钟	16	
6000	20 分钟	10	
6000	10 分钟	5	
6000	5 分钟	3	

5.4、数据数量

采集一次的数据总数为 27000 个, 具体每轴对应数量如下表。

公 + 4 作 2 李 / 1 1 _ 7	单轴数据量(个)	三轴数据量(个)	▽住口レ(-)	
采样频率(Hz)	加速度	加速度	采集时长(s)	
50	9000	27000	180	
100	9000	27000	90	
200	9000	27000	45	

六、索力计算与平台操作

计算索力需要使用安锐物联云平台,在平台中输入单位长度的缆索质量和缆索的长度即可算出 缆索的索力。在平台中可下载滤除重力加速度分量的三轴加速度高频数据。具体使用方法参考《安 锐物联云平台使用手册》。

七、术语与参数说明

安锐物联云平台中,物模型属性名称的名词含义参考如下:

电压:设备电池电压。

信号质量:设备的网络信号质量。

基频 X: X 方向的基频。

基频 Y: Y 方向的基频。

基频 Z: Z 方向的基频。

基频综合:通过三轴计算出的综合基频。

索力 X: X 方向的索力。

索力 Y: Y 方向的索力

索力 Z: Z 方向的索力

索力综合:通过三轴计算出的综合索力

单位质量:单位长度的缆索质量。

长度: 缆索的长度。

高频加速度保存文件:三轴加速度计采集的高频数据(滤除重力加速度分量)。

八、常见问题

1、为什么开机后没有数据?

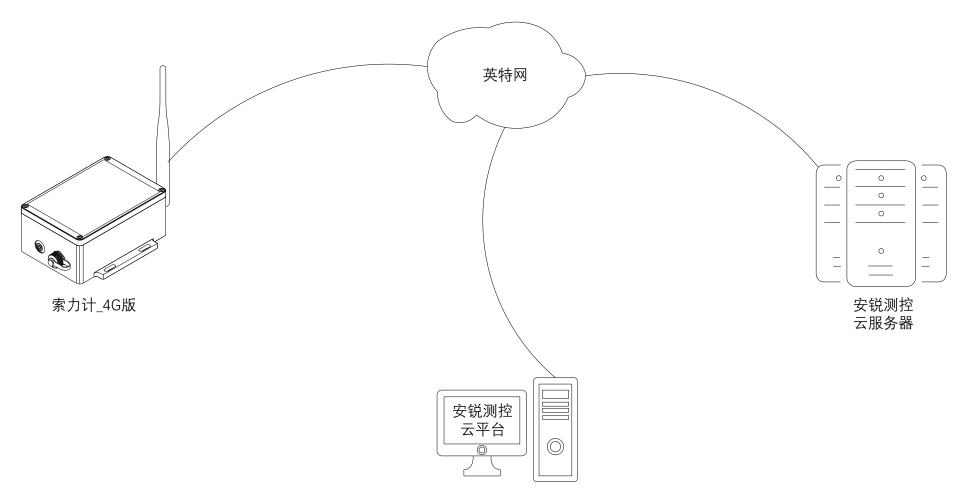
可能原因为网络信号差,数据未发送成功。每次发送数据的同时会发送信号质量值,低于 15 为信号质量差,低于该值设备可能无法正常传输信息。正常信号质量值在 15~30 之间。

2、什么时候需要充电或电压不足?

每次发送数据的同时会发送电池电压值,低于 2.7V 为欠压状态,欠压后设备无法正常工作。正常工作电压值在 2.7V~3.3V 之间。

3、是否可以使用三轴加速度计高频采集版本计算索力? 不可以。

九、注意事项


- 1、确保索力计的一轴与索的方向一致, 例如 X 轴与索方向平行。
- 2、测量索力时应避开索力明显变化阶段(如张拉期),应在结构稳定后进行。
- 3、索力计在运输和使用过程中应轻拿轻放,避免因过大的冲击和震动而损坏。
- 4、索力计如需要单独供电,供电线缆应根据项目不同,选择 PVC 管、PVC 桥架、不锈钢桥架等不同的保护方式,布线过程中避免线缆扭绞。
- 5、供电线缆不要和高压、大电流电源线并行走线布放、避免干扰。
- 6、布线完成后应在线缆头端做好标识,便于接入上一级设备或后期线路维护。

- 7、布线时线缆不要过于拉直和拉紧,避免意外受拉时线缆拉断。
- 8、若用于桥梁、索塔等高空布设,建议预留跌落保护装置。
- 9、索力计出现问题时,应及时与厂家联系,查明故障原因,请勿自行拆卸内部结构。

十、组网示意图

